

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SEMESTER II EXAMINATION, 2015/2016 ACADEMIC SESSION

COURSE TITLE: CONTROL THEORY

COURSE CODE: EEE 318

EXAMINATION DATE: 20TH JULY, 2016

COURSE LECTURER: DR, OGIDAN O.K.

HOD's SIGNATURE

TIME ALLOWED: 2HRS, 30MINS.

INSTRUCTIONS:

- 1. ANSWER QUESTION 1, AND ANY OTHER 3 QUESTIONS (TOTAL OF 4 QUESTIONS)
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU WILL BE PROVIDED WITH A TIME/LAPLACE TRANSFORM SHEET FOR THIS EXAM.
- 4. YOU ARE <u>NOT</u> ALLOWED TO BORROW CALCULATORS AND ANY OTHER WRITING MATERIALS DURING THE EXAMINATION.

Note: Question 1 is compulsory

1

Question 1

- a.) Define briefly the following
 - I. Transfer function
 - II. Modeling
 - III. System identification
 - IV. Bode plot
 - V. Nyquist stability criterion

b.) With the

A system has a transfer function: $G(s) = \frac{2}{(s+5)}$. Determine the magnitude and phase of the output from the

of the output from the system when it of subjected to a sinusoidal input of 2 sin 3t.

Question 2

- a.) What are the differences between open loop and closed loop system?
- b.) Outline the differences between on-off control and the Proportional Integral Derivative (PID) control
- c.) Write the following differential equations in the Laplace (s) domain
 - i. $F = m \frac{d^2 y}{dt^2} + c \frac{dy}{dt} + ky$, initial value of variable y = 0 at t = 0
 - ii. $v = RC \frac{dvc}{dt} + vc$, initial value of variable v = 0 at t = 0

iii.
$$4\frac{d^2v}{dt^2} + 2\frac{dv}{dt} - y$$
, initial value of variable $v = 3$ at $t = 0$

iv.
$$\frac{d^2 y}{dt^2} + 2\zeta w_n \frac{dy}{dt} + w_n^2 y = k w_n^2 x$$
, initial value of variable $y = 0$ at $t = 0$

Question 3

a.) A control system has two elements in series with transfer functions of $\frac{1}{(S+2)}$

and
$$\frac{1}{(S+4)}$$

- i.) Determine the overall transfer function
- ii.) Write a programme (to be run in the MATLAB workspace) that inputs a unit step function into the system and to output a steady state response
- b.) A system has an output y related to the input x by the differential equation:

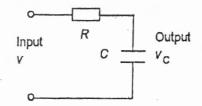
$$\frac{d^2 y}{dt^2} + 5\frac{dy}{dt} + 6y = x$$

2

What will be the output from the system when it is subjected to a unit step

input? Initially both the input and output are zero.

Hint: Use the Time/Laplace domain transformation table


Question 4:

- a.) What are the differences between differential equation and transfer function?
- b.) Outline the differences between first order and second order systems
- c.) Give two examples of a second order system
- d.) Give two examples of a first order system
- e.) A system has a transfer function $\frac{1}{(s+5)}$. What will be its output as a function of

time when it is subjected to a unit step input of 1V?

Question 5

- a.) Describe the concept of stability and its importance in control systems
- b.) Compare and contrast between classical and modern control systems
- c.) Consider a circuit with a resistor R and capacitor C in series:

- i.) Determine the transfer function for the circuit in c.
- ii.) What will be its output as a function of time if it is subjected to a 5V ramp input?

	Time function $f(t)$	Laplace transform $F(s)$
1	A uni; impulse	1
2	A unit step	1.
3	t, a unit ramp	$\frac{1}{s^2}$
4	e ^{-ar} , exponential decay	s+a
5	$1 - e^{-\alpha r}$, exponential growth	$\frac{a}{s(s+a)}$
6	fe ^{-af}	$\frac{1}{(s+a)^2}$
7	$l - \frac{1 - e^{-al}}{a}$	$\frac{a}{s^2(s+a)}$
8	$e^{-at} - e^{-bt}$	$\frac{b-a}{(s+a)(s+b)}$
9	$(1-a!)e^{-at}$	$\frac{s}{(s+a)^2}$
10	$1 - \frac{b}{b-a}e^{-bt} + \frac{a}{b-a}e^{-bt}$	$\frac{ab}{s(s+a)(s+b)}$
11	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-a)(a-b)} + \frac{e^{-at}}{(a-c)(b-c)}$	$\frac{1}{(s+a)(s+b)(s+c)}$
12	sin ox, a sine wave	$\frac{\omega}{s^2+\omega^2}$
13	cos ad, a cosine wave	$\frac{y}{s^2+\omega^2}$
14	e ^{-at} sia wt, a damped sine wave	$\frac{\omega}{(s-a)^2+\omega^2}$
15	o ^{-st} cos (st, a camped cosine wave	$\frac{s+a}{(s-a)^2+\omega^2}$
15	$\frac{\omega}{\sqrt{1-\zeta^2}} e^{-\zeta \omega t} \sin \omega \sqrt{1-\zeta^2} t$	$\frac{\omega^2}{s^2+2\zeta\omega s+\omega^2}$
17	$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega t} \sin\left(\omega \sqrt{1 - \zeta^2} t + \phi\right), \cos \phi = \zeta$	$\frac{\omega^2}{s(s^2+2\zeta\omega s+\omega^2)}$

.

. .